Useful Equations

✔ Newton's Law of Gravitation: \(\vec{F}_g = G \frac{m_1 m_2}{r^2} (-\hat{r}) \)

◦ Gravitational Constant: \(G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2 \)

✔ Gravitational Potential Energy: \(U = -\frac{G m_1 m_2}{r} \)

Problems:

1. (***) If we can assume that a planet (of mass \(M_p \)) travels in a circular orbit about the sun (which has a mass \(M_S \)) at a radius \(r \), how long is one year for the planet? (i.e. how long does it take to make one revolution? If the Earth is \(1.49598 \times 10^{11} \text{ m} \) from the sun, and the sun has a mass \(M_S = 1.98895 \times 10^{30} \text{ kg} \) and the earth has a mass \(M_p = 5.97420 \times 10^{24} \text{ kg} \), how long is one year on Earth?

2. (***) Satellites are often put into a geosynchronous orbit, so that they do not appear to move in the sky. If the altitude at which these satellites rest is \(h \), at what speed do they need to move so that they do not appear to move relative to the ground? (Call the mass of the earth \(M_E \) and the radius of the earth \(R_E \))
3. (**) Determine the minimum velocity required for an object of mass m to escape the gravitational pull of a larger object of mass M if the initial distance between the two objects is R. (There is an easier way to do this than you saw in lecture – just use conservation of energy)

4. (***) Two objects, m_1 and m_2 are separated by a distance d. At what position could I place a third mass (m) so that it felt no NET gravitational force? Check your answer by using the case that $m_1 = m_2$. (Comment: If you get to a point where you need to use the quadratic formula – tell me and I'll show you a neat trick)