2. A has 40 kg mass
 B has 33 kg mass
 plank has 22 kg mass

 The center of mass of system must be on the fulcrum (stone). Easiest way:
 take left end to be reference, then

 \[r_{cm} = \frac{0(40 \text{ kg}) + (22 \text{ kg})(3 \text{ m}) + (33 \text{ kg})(6 \text{ m})}{40 + 33 + 22} \]

 \[= 2.78 \text{ m} \]

 So placing stone 2.78 meters from kid
 A will balance system!

 More difficult way suggested in session.
 take fulcrum to be origin:

 \[\frac{A \times x}{1} \frac{6-x}{B} \]

 then
\[\overrightarrow{F}_{em} = 0 = \left(-x\right)(40 \text{ kg}) + (6-x)(33 \text{ kg}) + (3-x)(22 \text{ kg}) \]
\[\frac{40 + 22 + 33}{40 + 22 + 33} \]

\[0 = -40x + (6 \cdot 33) - 33x + (3 \cdot 22) - 22x \]

\[264 - 95x = 0 \]

\[x = 2.78 \]

Same answer is great!