Definition Review:

1) Classify each of the following differential equations by determining:
 i. Linear? Ordinary? What is the order? Independent Variable?

 a. \[25 \frac{d^2x}{dt^2} - 5 \frac{dx}{dt} - 10x = \sin(15t) \]

 b. \[\frac{1}{y-1} y' = 2xy \]

 c. \[\frac{\partial^2 u}{\partial x^2} = \frac{1}{v(x,t)} \frac{\partial^2 u}{\partial t^2} \]

 d. \[\frac{e^x}{x^2y^2} (y')^2 + \left(\frac{x}{y} \right)^2 = \left(\frac{1}{y^2} \right) \int_1^x e^{t^2} dt \]

2) Consider the initial conditions for 1b. of the point \(y(0)=2 \).
 i. Does this IVP have a solution (at least in some interval around 0)? Is this solution unique?

 ii. Solve the IVP for an explicit solution \(\text{Hint: separable, partial fractions} \)
3) For what value of \(m \) is \(y = x^m \) A solution of the following DE?

i. \(x^2 y'' - 7xy' + 15y = 0 \)

4) Given: \(x = c_1 \cos t + c_2 \sin t \) is a two-parameter family of solutions of the second-order DE \(x'' + x = 0 \). Find a solution of the second order IVP given the initial conditions:

\[x\left(\frac{\pi}{6}\right) = 0.5, \quad x'\left(\frac{\pi}{6}\right) = 0 \]

5) Newton’s Law of Cooling

5. A cup of coffee cools according to Newton’s law of cooling (3). Use data from the graph of the temperature \(T(t) \) in Figure 1.3.10 to estimate the constants \(T_m, T_0 \), and \(k \) in a model of the form of a first-order initial-value problem: \(\frac{dT}{dt} = k(T - T_m). \) \(T(0) = T_0. \)

![Figure 1.3.10](image.jpg)
FIGURE 1.3.10 Cooling curve in Problem 5
32. From \(y = x^m \) we obtain \(y' = mx^{m-1} \) and \(y'' = m(m-1)x^{m-2} \). Then \(x^2y'' - 7xy' + 15y = 0 \) implies

\[
x^2m(m-1)x^{m-2} - 7mx^{m-1} + 15x^m = [m(m-1) - 7m + 15]x^n
\]

\[
= [m^2 - 8m + 15]x^m = (m - 3)(m - 5)x^n = 0.
\]

Since \(x^n > 0 \) for \(x > 0 \), \(m = 3 \) and \(m = 5 \). Thus \(y = x^3 \) and \(y = x^5 \) are solutions.

9. From the initial conditions we obtain

\[
\frac{\sqrt{3}}{2} c_1 + \frac{1}{2} c_2 = \frac{1}{2}
\]

\[
-\frac{1}{2} c_1 + \frac{\sqrt{3}}{2} c_2 = 0.
\]

Solving, we find \(c_1 = \sqrt{3}/4 \) and \(c_2 = 1/4 \). The solution of the initial-value problem is

\[
x = (\sqrt{3}/4) \cos t + (1/4) \sin t.
\]

5. From the graph in the text we estimate \(T_0 = 180^\circ \) and \(T_n = 75^\circ \). We observe that when \(T = 85 \), \(dT/dt \approx -1 \). From the differential equation we then have

\[
k = \frac{dT/dt}{T - T_m} = \frac{-1}{85 - 75} = -0.1.
\]