1. Find an equation for the circle of curvature of the curve \(r(t) = ti + (\sin(t))j \) at the point \(\left(\frac{\pi}{2}, 1 \right) \). (The curve parameterizes the graph of \(y = \sin x \) in the xy-plane.)

2. Write \(a \) in the form \(a = a_T T + a_N N \) without finding \(T \) and \(N \) given the curve \(r(t) = (\cos(t))i + (\sin(t))j + btk \)

3. In the following curves write \(a \) in the same form as problem 2 at the given value of \(t \) without finding \(T \) and \(N \).
 a. \(r(t) = (t + 1)i + 2tj + t^2k, \ t = 1 \)
 b. \(r(t) = t^2i + \left(t + \left(\frac{1}{3} t^3 \right) \right)j + \left(t - \left(\frac{1}{3} t^3 \right) \right)k, \ t = 0 \)

4. Find \(a_T \) and \(a_N \) for the curve \(r(t) = (t + t^2, t - t^2, 2t) \)