Note: Exam 2 will cover more material than what is listed here and on the other sample test! Study your notes, homework, and textbook to cover all material from Sections 4.1-4.5 and 5.1-5.2

1. Find the Derivative of the function \(f(x) \) \hspace{1cm} (4.1)

\[
f(x) = \frac{4}{\sqrt[3]{x^3}} + 4x
\]

2. Find the Derivative of the function \(g(t) \) \hspace{1cm} (4.1)

\[
g(t) = \frac{t^2 + 3}{t^{1/2}}
\]

3. Find the equation of the line tangent to the curve \(f(x) = x(3 - x^2) \) \hspace{1cm} (4.2)
at the point (2,-2). Use the product rule for the derivative of \(f \).
4. Use the following values to evaluate the derivatives:
 \(f(a)=6, \quad f'(a)=-8, \quad g(a)=-3, \quad g'(a)=4, \quad h(a)=0, \quad h'(a)=11 \)

 a) Find \(M'(a) \) for \(M(x)=f(x)*g(x) \)

 b) Find \(M'(a) \) for \(M(x)=\frac{h(x)}{g(x)} \)

5. Find the derivative of \(\frac{\sqrt{t}}{t^2-4} \)

6. The total number bacteria (in millions) \(t \) hours after the present time is given by the function
 \(N(t)=5^{2t-4} \). What is the function for the rate of growth of the bacterial population \((dN/dt) \)?
 (4.3, 4.4)

7. Find the derivative of \(g(t) = \log_4(3t) \)
 (4.3, 4.5)
8. The unit price of calculators is given by \(p(x) = 10 - \sqrt{x} \) where \(p \) is price in dollars and \(x \) is millions of calculators.
 a) Find the revenue function and determine the revenue from producing and selling 4 million calculators

 b) Determine the marginal revenue of producing 4 million calculators

 c) Using this, approximate the revenue from producing 5 million calculators

 d) Write the equation for the tangent line to the revenue curve when 4 million calculators are produced.
9. Find all critical numbers for the following (5.1-5.2)
 a) \(f(x) = x^3 - 12x \)

 b) \(f(x) = \sqrt{x^2 - 4} \)

10. Find the intervals for which the following functions are increasing, decreasing, and find the points for all relative maxima and minima (5.1-5.2)
 a) \(f(x) = x^3 - 3x + 4 \)
b) \(f(x) = \ln x - x \)

11. Determine the \(x \) values for the relative extrema on \(f(x) \) from the graph of \(f'(x) \) below (5.2)