1. Define the following:

<table>
<thead>
<tr>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line of action</td>
<td></td>
</tr>
<tr>
<td>Moment</td>
<td></td>
</tr>
</tbody>
</table>

2. Draw a free Body Diagram for the blue box:

3. Consider the following situation, where the lamp 4-kg lamp:
 a. Draw the FBD at point B:
 b. What is the Tension in the Cables?
 c. Draw the FBD at point C:
 d. Determine the required force F to hold the 4-kg lamp in place:

4. If the maximum moment magnitude that the stool support can sustain about point A is $M_A = 185\text{lb} \cdot \text{ft}$, what is the maximum height d_1 that the stool can have if the magnitudes of the two forces are $F_1 = 35.0\text{lb}$ and $F_2 = 135\text{lb}$?

5. If the Little Shop of Physics Box Weights 15kg and the beam has a uniform density and mass of 2kg:

 a. What is the Tension in the Cable?

 b. What is the Moment Around point A?

6. If $F_1 = 14.3\text{lb}$, $F_2 = 11.5\text{lb}$, $F_3 = 11.6\text{lb}$, $F_4 = 11.2\text{lb}$, $d_1 = 0.500\text{ft}$, $d_2 = 0.900\text{ft}$, and $d_3 = 0.900\text{ft}$, what is M_A the net moment about point A due to these forces?

7. Using the drawing below, what is the moment around point A?