(20.1) A diesel engine performs 2200 J of mechanical work and discards 4300 J of heat each cycle. (a) How much heat must be supplied to the engine in each cycle? (b) What is the thermal efficiency of the engine?

(20.9) A refrigerator has a coefficient of performance of 2.10. In each cycle it absorbs 3.40E4 J of heat from the cold reservoir. (a) How much mechanical energy is required each cycle to operate the refrigerator? (b) During each cycle, how much heat is discarded to the high-temperature reservoir?

(20.13) A Carnot engine whose high-temperature reservoir is at 620 K takes in 550 J of heat at this temperature in each cycle and gives up 335 J to the low-temperature reservoir. (a) How much mechanical work does the engine perform during each cycle? (b) What is the temperature of the low-temperature reservoir? (c) What is the thermal efficiency of the cycle?

(20.16) An ice-making machine operates in a Carnot cycle. It takes heat from water at 0.0°C and rejects heat to a room at 24.0°C. Suppose that 85.0 kg of water at 0.0°C are converted to ice at 0.0°C. (a) How much heat is discharged into the room? (b) How much energy much be supplied to the device?

3. A block is placed near the edge of a horizontal turntable of radius 5 m that is initially at rest. It is attached to a motor that gives it an angular acceleration α. The coefficient of static friction between the block and the turntable is $\mu_s = 0.2$. What is the maximum magnitude of the angular acceleration, α, that the motor can deliver so that the block will not slide the instant after the turntable begins to move?
20.1. **IDENTIFY:** For a heat engine, \(W = |Q_H| - |Q_C| \). \(e = \frac{W}{Q_H} \). \(Q_H > 0 \), \(Q_C < 0 \).

SET UP: \(W = 2200 \text{ J} \), \(|Q_C| = 4300 \text{ J} \).

EXECUTE:

(a) \(Q_H = W + |Q_C| = 6500 \text{ J} \).

(b) \(e = \frac{2200 \text{ J}}{6500 \text{ J}} = 0.34 = 34\% \).

EVALUATE: Since the engine operates on a cycle, the net \(Q \) equal the net \(W \). But to calculate the efficiency we use the heat energy input, \(Q_H \).

20.9. **IDENTIFY** and **SET UP:** For the refrigerator \(K = 2.10 \) and \(Q_C = -3.4 \times 10^4 \text{ J} \). Use Eq.(20.9) to calculate \(|W| \) and then Eq.(20.2) to calculate \(Q_H \).

(a) **EXECUTE:** Performance coefficient \(K = \frac{Q_C}{|W|} \) (Eq.20.9)

\[
|W| = \frac{Q_C}{K} = \frac{3.4 \times 10^4 \text{ J}}{2.10} = 1.62 \times 10^4 \text{ J}
\]

(b) **SET UP:** The operation of the device is illustrated in Figure 20.9.

![Figure 20.9](image)

EVALUATE \(|Q_H| = |W| + |Q_C| \). The heat \(|Q_H| \) delivered to the high temperature reservoir is greater than the heat taken in from the low temperature reservoir.

20.13. **IDENTIFY:** Use Eq.(20.2) to calculate \(|W| \). Since it is a Carnot device we can use Eq.(20.13) to relate the heat flows out of the reservoirs. The reservoir temperatures can be used in Eq.(20.14) to calculate \(e \).

(a) **SET UP:** The operation of the device is sketched in Figure 20.13.

![Figure 20.13](image)

EXECUTE:

\(W = Q_C + Q_H \)

\(Q_H = W - Q_C \)

\(Q_H = -1.62 \times 10^4 \text{ J} - 3.40 \times 10^4 \text{ J} = -5.02 \times 10^4 \text{ J} \)

(negative because heat goes out of the system)

(b) For a Carnot cycle, \(\frac{|Q_C|}{|Q_H|} = \frac{T_C}{T_H} \) (Eq.20.13)

\[
T_C = T_H \frac{|Q_C|}{|Q_H|} = 620 \text{ K} \left(\frac{335 \text{ J}}{550 \text{ J}} \right) = 378 \text{ K}
\]

(c) \(e(\text{Carnot}) = 1 - T_C / T_H = 1 - 378 \text{ K}/620 \text{ K} = 0.390 = 39.0\% \)

EVALUATE: We could use the underlying definition of \(e \) (Eq.20.4):

\(e = \frac{W}{Q_H} = \frac{(215 \text{ J})/(550 \text{ J})}{39\%} \), which checks.
20.16. IDENTIFY and SET UP: The device is a Carnot refrigerator. We can use Eqs (20.2) and (20.13). (a) The operation of the device is sketched in Figure 20.16.

![Figure 20.16](image)

\[\begin{align*}
Q_H &= 0 \\
Q_C &= +2.84 \times 10^7 \text{ J} \\
T_E &= 24.0^\circ \text{C} = 297 \text{ K} \\
T_R &= 0.0^\circ \text{C} = 273 \text{ K}
\end{align*} \]

Figure 20.16

The amount of heat taken out of the water to make the liquid → solid phase change is

\[Q = -mL_f = -(8.5 \text{ kg})(334 \times 10^3 \text{ J/kg}) = -2.84 \times 10^7 \text{ J} \]
This amount of heat must go into the working substance of the refrigerator, so \(Q_c = +2.84 \times 10^7 \text{ J} \). For Carnot cycle \(|Q_{E}|/|Q_{R}| = T_E/T_R \)

EXECUTE:

\[W = 0 - Q_C = -2.84 \times 10^7 \text{ J} - 5.09 \times 10^7 \text{ J} = -2.5 \times 10^7 \text{ J} \]

EVALUATE: \(W \) is negative because this much energy must be supplied to the refrigerator rather than obtained from it. Note that in Eq (20.13) we must use Kelvin temperatures.

3. \[r = 5 \text{ m}, \omega = 0 \text{ rad/s}, \theta_s = 0.2, \alpha_{\text{max}} = ? \]

\[\Sigma F_x = \max = (f_x)_{\max} = \mu_s N = \mu_s mg \]

\[\alpha = \omega_{\text{tan}} = r\alpha \quad (a_{\text{rot}} = r\omega^2 = 0) \]

\[\Rightarrow \max = \mu_s mg \]

\[\alpha = \frac{\mu_s g}{r} = \frac{(0.2)(9.8) \text{ m/s}^2}{5 \text{ m}} = 0.392 \text{ rad/s} \]