1) The solid shaft is subjected to the distributed and concentrated terminal load shown. Determine the required diameter \(d \) of the shaft if the allowable shear stress for the material is \(\tau_{\text{allow}} = 60 \, \text{MPa} \).
2) If the gears are subjected to the torques shown, determine the maximum shear stress in the segment AB and BC of the A-36 steel shaft. The shaft had a diameter of 40 mm.
3) The link acts as part of the elevator control for a small airplane. If the attached aluminum tube has an inner diameter of 25 mm and a wall thickness of 5 mm, determine the maximum shear stress in the tube when the cable force of 600 N is applied to the cables. Also, sketch the shear-stress distribution over the cross-section.