1) The linkage is made using two A-36 steel rods, each having a circular cross section. Determine the diameter of each rod to the nearest \(\frac{1}{8} \) in. that will support the 900-lb load. Assume that the rods are pin connected at their ends. Use a factor of safety with respect to buckling of F.S. = 1.8.

\[E = 29 \times 10^6 \text{ psi} \]

\[\sigma_y = 36 \text{ ksi} \]
2) The bell crank is pinned at A and supported by a short link BC. If it is subjected to the force of 80 N, determine the principal stresses at (a) point D and (b) point E. The crank is constructed from an aluminum plate having a thickness of 20 mm.