Show all of your work and circle your section number. Final answers must be shown in the space provided on this page.

3. [15 pts] A fabricated wooden I-beam is constructed by gluing three rectangular boards and has cross-sectional dimensions as shown at the right. This beam supports a uniformly distributed load of 2 kN/m and is simply supported as depicted below.

(a) (2 pts) Draw a free-body diagram of the beam beginning at the left end and ending on a cut section at \(X = 1 \) meter. (2 pts) Determine the internal loads acting on the cut section.

(b) (1 pts) Determine the location \(x \) where the bending moment is greatest.

(c) (3 pts) Determine the largest magnitude compressive stress in the fabricated wooden I-beam.

(d) (3 pts) Determine the maximum shear stress at the location where \(X = 1 \) m.

(e) (1 pts) Write an equation for the shear force in the beam as a function of \(X \).

(f) (3 pts) Determine the minimum necessary adhesive strength of the glue which bonds the three board together.

\[2 \text{ kN/m} \]

INCLUDE UNITS for all answers

(a) \(V(x=1) = -2 \text{ kN down} \)

(b) \(M(x=1) = +3 \text{ kN m} \)

(c) \(\sigma = 4.006 \text{ MPa} \)

(d) \(\tau_{\text{wood max}} = 0.325 \text{ MPa} \)

(e) \(V(x) = [4 - 2x] \text{ kN} \)

(f) \(\tau_{\text{glue min}} = 0.577 \text{ MPa} \)

Statics on beam

\[F_L + F_R = (4 \text{ m})(2 \text{ kN/m}) = 8 \text{ kN} \]

\[(4 \text{ m}) F_L = (2 \text{ m}) 8 \text{ kN} = 0 \]

mean \(F_L = F_R = 4 \text{ kN} \)

Statics on segment

\[4 \text{ kN} + V - (1 \text{ m})(2 \text{ kN/m}) = 0 \]

\[2 \text{ kN (0.5 m)} + M - (4 \text{ kN})(1) = 0 \]

mean \(V = -2 \text{ kN} \)

\[M = +3 \]
(c) Maximum moment occurs at mid-span
\[(4\, \text{kN})(2\, \text{m}) - (2\, \text{kN/m})(2\, \text{m})(1\, \text{m}) = 4\, \text{kNm} \]

Maximum compressive stress occurs at the top surface of I-beam with (+) moment
\[c = 100\, \text{mm} \]

2nd Area Moment
\[I_{NA} = \frac{1}{12} \left[(180\, \text{mm})(200\, \text{mm})^3 - (180-40\, \text{mm})(120\, \text{mm})^3 \right] \]
\[= 99.84\, (10)^6\, \text{mm}^4 \]

\[\sigma = \frac{M_c}{I} = \frac{4(10)^6\, \text{Nmm}(100\, \text{mm})}{99.84\, (10)^6\, \text{mm}^4} = \frac{4.006\, \text{N}}{\text{mm}^2} = 4.01\, \text{MPa} \]

(d) Maximum Shear Stress occurs at Neutral Axis
\[Q_{NA} = \sum \bar{Y}'a' = 30\left[(40)(60) + (60+20)(180)(40)\right] \]
\[= 648\, (10)^3\, \text{mm}^3 \]
\[\tau_{\text{wood max}}(x=1\, \text{m}) = \frac{VQ_{NA}}{I + t} = \frac{(2000\, \text{N})(648\, (10)^3\, \text{mm}^3)}{99.84\, (10)^6\, \text{mm}^4(40\, \text{mm})} \]
\[= 0.3245\, \text{N/mm}^2 = 0.325\, \text{MPa} \]

(f) Maximum shear stress in glue bond occurs at maximum shear force location (left and right ends)
\[Q_{\text{glue}} = \bar{Y}'a' = (60+20)\, \text{mm} \left[(180)(40)\, \text{mm}^2 \right] \]
\[= 576\, (10)^3\, \text{mm}^3 \]
\[\tau_{\text{glue min}} = \frac{V_{\text{max}}Q_{\text{glue}}}{I + t} = \frac{(4000\, \text{N})(576\, (10)^3\, \text{mm}^3)}{99.84\, (10)^6\, \text{mm}^4(40\, \text{mm})} \]
\[= 0.576\, \text{N/mm}^2 = 0.577\, \text{MPa} \]