Exam review times? Turn to partner, alfredo or tomato sauce?

1. **RADICALS W/ ALKENES**

 ![Reaction Scheme](image)

 NBS \equiv Br

 \rightarrow **EXAMPLE: MULTIPLE PRODUCTS**

 \rightarrow **WHY CAN'T Br$_2$ BE USED (BROMINATION CONFLICTS)**

 Initiation

 ![Initiation Scheme](image)

 ![Propagation Scheme](image)

 Propagation

10.7 **PREDICTING THE PRODUCTS OF ALLYLIC BROMINATION**

STEP 1 Identify the allylic position.

STEP 2 Remove a hydrogen atom and draw resonance structures.

STEP 3 Place a bromine at each location that bears an unpaired electron.

10.16 Predict the products when each of the following compounds is treated with NBS and irradiated with UV light:

(b) ![Allylic Positions](image)

(c) ![Allylic Positions](image)

(d) ![Allylic Positions](image)
10.8 PREDICTING THE PRODUCTS FOR RADICAL ADDITION OF HBr

STEP 1 Identify the two groups being added across the double bond.

HBr

STEP 2 Identify the expected regioselectivity.

ROOR

STEP 3 Identify the expected stereospecificity.

Br is installed here at the less substituted position

10.21 Predict the products for each reaction. In each case, be sure to consider whether a chiral center is being generated, and then draw all expected stereoisomers.

HBr

ROOR

(no chiral centers)

ALKynes ↔ OTHER RXNS

H—Br

H—Br

H—Br

DIFF B/W REARRANGEMENTS RADICAL (RES) + CARBOCAT (SHIFTS)
3 Reaction Review

Prep for Wed - Worksheet

Bromination of Alkanes

Anti-Markovnikov Addition of HBr to Alkenes

Allylic Bromination

1. Elimination
2. Hydrohalogenation (two equivalents)
3. Hydrohalogenation (one equivalent)
4. Acid-catalyzed hydration
5. Hydroboration-oxidation
6. Halogenation (one equivalent)
7. Halogenation (two equivalents)
8. Ozonolysis
9. Allylation
10. Dissolving metal reduction
11. Hydrogenation
12. Hydrogenation with a poisoned catalyst

Additional Chemical Reactions

1. Hydrohalogenation (Markovnikov)
2. Hydrohalogenation (anti-Markovnikov)
3. Acid-catalyzed hydration and oxymercuration-demercuration
4. Hydroboration-oxidation
5. Hydrogenation
6. Bromination
7. Haloxydrin formation
8. Anti-dihydroxylation
9. Syn dihydroxylation
10. Ozonolysis
Synthetically Useful Transformations

Primary Substrates

Tertiary Substrates

S_N2 Reactions

E2 Reactions

S_N1 and E1 Reactions