1. **Exam Review, Entering Focus of Class: Reaction Mechanisms, Next Time: Carboxylic Acids**

 Intro to Mechanisms

 Bond-Breaking: "Homolytic" (Each gets 1 e⁻)
 "Heterolytic" (One gets 2, one gets none)

 - **Homo:** No formal charge, but there are incomplete octets
 - **Hetero:** AKA polar (or ionic) reactions

2. **NuCl/E**

 - Identify NuCl/E indicators

 Table 6.3: A Summary of Some Common Nucleophilic Centers and Electrophilic Centers

 - | Nucleophiles | Electrophiles |
 - | Feature | Example | Feature | Example |
 - | Inductive effects | H₂⁻ | Inductive effects | H⁺ |
 - | Lone pair | Empty p orbital |

 Common Final Groups → Sort Post-Its

 - **Hydroxide**
 - **Natal**
 - **Cyanoide**
 - **Bromide**
 - **Alcohol**
 - **Amine**
 - **Alkene**
 - **Alkene**

 - **Carboxylation**: Carbon with +1 charge can be used to add to nucleophiles.
 - **Ketone**
 - **Acid Chloride**
 - **Alkyl Chloride**
 - **Alkyl Bromide**

3. **Bond-Forming**

 - **NuCl Attacks E**
 - **Proton Transfer:** "Picks up" H + "Kicks off" E
 - **Leaving Group:** "Kicked Off"
6.11 For each of the following cases, read the curved arrows and identify which arrow-pushing pattern is utilized:

(a) The curved arrow indicates a hydride shift, which is a type of carbonium rearrangement.
(b) The curved arrow indicates a nucleophilic attack. In this case, water functions as a nucleophile and attacks the carbonium.
(c) The curved arrow indicates a proton transfer. In this case, water functions as the base that removes the proton.
(d) The curved arrow indicates a nucleophilic attack. In this case, one of the lone pairs on the oxygen acts as a nucleophile that attacks the electrophilic center.
(e) The curved arrow indicates loss of a leaving group (Cl).

IN GENERAL: SHOW MECH OF RXN (ONE OF 3 TYPES)
- DETERMINING IF RXN HAPPENS: CONSIDER STABILITY OF PRODUCTS
- EXPECT TO SHOW FOR EACH STEP: ID WHICH TYPE

Draw the curved arrows that accomplish the following transformation:

6.15 Draw the curved arrows that accomplish each of the following transformations:

(a)

(b)

(c)

PREDICTING & IDING MECHS:

6.31. The sequence of arrow-pushing patterns is as follows:

NUCLEOPHILIC ATTACK

LOSS OF A LEAVING GROUP

6.35. The sequence of arrow-pushing patterns is as follows:

NUCLEOPHILIC ATTACK

LOSS OF A LEAVING GROUP

NUCLEOPHILIC ATTACK

PROTON TRANSFER