Chapter 10 Worksheet 2

1. For the process \(A \rightarrow B \), \(\Delta H^\circ = 171 \text{ kJ/mol} \) and \(\Delta S^\circ = 161 \text{ J/K-mol} \). Assuming that \(\Delta H^\circ \) and \(\Delta S^\circ \) do not change with temperature, at what temperature in °C does the reaction go from being nonspontaneous to spontaneous?

2. What is the standard free energy change, \(\Delta G^\circ \), in kJ, for the following reaction at 298K?

\[
\text{C}_2\text{H}_5\text{OH}(l) + 3\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + 3\text{H}_2\text{O}(g)
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta G^\circ) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_2\text{H}_5\text{OH}(l))</td>
<td>-175</td>
</tr>
<tr>
<td>(\text{CO}_2(g))</td>
<td>-394</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}(g))</td>
<td>-229</td>
</tr>
<tr>
<td>(\text{O}_2(g))</td>
<td>0</td>
</tr>
</tbody>
</table>

2. A reaction has a standard enthalpy change, \(\Delta H \), of +10.00 kJ mol\(^{-1}\) at 298 K. The standard entropy change, \(\Delta S \), for the same reaction is +10.00 J K\(^{-1}\) mol\(^{-1}\). What is the value of \(\Delta G \) for the reaction in kJ mol\(^{-1}\)?
3. The equation for the decomposition of calcium carbonate is given below.

\[\text{CaCO}_3(\text{s}) \rightarrow \text{CaO}(\text{s}) + \text{CO}_2(\text{g}) \]

At 500 K, \(\Delta H \) for this reaction is +177 kJ mol\(^{-1} \) and \(\Delta S \) is 161 J K\(^{-1} \) mol\(^{-1} \)

(a) Explain why \(\Delta H \) for the reaction above cannot be described as \(\Delta H^0 \)

(b) State the meaning of the term \(\Delta S \).

(c) Calculate the value of \(\Delta G \) at 500 K and determine, giving a reason, whether or not the reaction will be spontaneous.

4. Consider the following reaction:

\[\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g}) \quad \Delta H = -92.4 \text{ kJ mol}^{-1} \]

(i) The absolute entropy values, \(S \), at 238 K for \(\text{N}_2(\text{g}) \), \(\text{H}_2(\text{g}) \) and \(\text{NH}_3(\text{g}) \) are 192, 131 and 193 J K\(^{-1} \) mol\(^{-1} \) respectively. Calculate \(\Delta S^0 \) for the reaction and explain the sign of \(\Delta S^0 \).

(ii) Calculate \(\Delta G^0 \) for the reaction at 238 K. State and explain whether the reaction is spontaneous.
5. Hex-1-ene gas, \(\text{C}_6\text{H}_{12} \), burns in oxygen to produce carbon dioxide and water vapour.

(a) Write an equation to represent this reaction.

(b) Use the data below to calculate the values of \(\Delta H_c^\theta \) and \(\Delta S^\theta \) for the combustion of hex-1-ene.

<table>
<thead>
<tr>
<th>Substance</th>
<th>(\text{O}_2\text{(g)})</th>
<th>(\text{C}6\text{H}{12}\text{(g)})</th>
<th>(\text{CO}_2\text{(g)})</th>
<th>(\text{H}_2\text{O}\text{(l)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard enthalpy of formation, (\Delta H_f^\theta) (kJ mol(^{-1}))</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Entropy, (S^\theta) (J K(^{-1}) mol(^{-1}))</td>
<td>205</td>
<td>385</td>
<td>214</td>
<td>189</td>
</tr>
</tbody>
</table>

(i) Value of \(\Delta H_c^\theta \)

(ii) Value of \(\Delta S^\theta \)

(c) Calculate the standard free energy change for the combustion of hex-1-ene.

(d) State and explain whether or not the combustion of hex-1-ene is spontaneous at 25°C.